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Summary

Numerical simulations of groundwater flow and chemical
transport through three-dimensional heterogeneous po-
rous media are described. The authors employ two CRAY
supercomputers for different parts of the decoupled calcu-
lation: the flow field is computed on the T3D massively
parallel computer, and the contaminant migration is simu-
lated on the C90 vector supercomputer. The authors com-
pare simulation results for subsurface models based on
homogeneous and heterogeneous conceptual models
and find that the heterogeneities have a profound impact
on the character of contaminant migration.

1 Introduction

Numerical simulations of groundwater flow and chemical
transport in subsurface formations play an increasingly
important role in the field of environmental engineering.
In the context of contaminated soil and groundwater sys-
tems, simulations are typically used to (1) determine the
basic flow and chemical migration patterns at contami-
nated sites; (2) analyze, develop, or otherwise optimize
remediation strategies for the removal of contaminants;
(3) demonstrate compliance with regulatory cleanup
standards; and (4) evaluate contaminant travel times and
attenuation rates for use in environmental risk analyses
(National Research Council, 1990).

Realistic simulations must account for the fact that
subsurface media are naturally nonuniform and heteroge-
neous. One way to systematically analyze flow in these
systems involves the application of homogenization pro-
cedures in which larger scale (1 km) model equations are
developed to reflect the effects of smaller scale (10 m)
heterogeneity (Dagan, 1989; Gelhar, 1993). In this sense,
numerical simulations based on homogenized models
seek to reproduce the bulk flow and transport behavior
observed over relatively large spatial scales. This type of
approach, however, cannot reveal the complicated prefer-
ential flow paths that are present in heterogeneous media,
nor can it account for or fully represent the effects of
nonlinear interactions that occur in localized regions. In
addition, the idealizations used in the homogenized ap-
proaches to describe the character and form of subsurface
heterogeneity may not be applicable in all systems.

Because of this, we are following a strategy of using
detailed (local-scale) simulation to complement simpler,
bulk-scale models and homogenization theories (Dagan,
1989; Gelhar, 1993). A typical application may involve a
field site that is a kilometer square in areal extent and a
hundred meters in depth. To represent the effects of me-
dium heterogeneity on the scale of 1 to 10 m, spatial
meshes with 108 or more nodes may ultimately be
required.

In our simulations, heterogeneity will be represented
with a random, spatially correlated model of property
variability. In this sense, statistical properties of measured
data (mean, variance, and spatial correlation or persist-
ence) are reproduced in one or more representative reali-
zations of the subsurface formation (Tompson, Ababou,
and Gelhar, 1989). Hundreds of time-dependent simula-
tions may be required as part of an exploratory investiga-
tion of various remediation options or to evaluate the
impact of different model parameters (Bellin, Salandin,
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and Rinaldo, 1992). Consequently, we need the capability
to repeatedly run detailed simulations of large sites, and
this need drives our use of supercomputers.

In this paper, a simple case study is used to illustrate
these effects by comparing detailed flow and transport
simulations (more than 8 million spatial zones) for two
representations of a model subsurface formation. In each
case, the formation is multilayered, consisting of seven
distinct hydrostratigraphic units (which we call geounits
for brevity): five alluvial layers (composed of variably
mixed gravels, sands, silts, and clays), a clay region, and
a fault zone. In the first simulation, we assume the
geounits have homogeneous (uniform) properties; in the
second simulation, we assume they have heterogeneous
(nonuniform) properties, as described by the random
model referred to above.

Saturated (single-phase) flow in the system is com-
puted by first solving an elliptic partial differential equa-
tion (PDE) for the hydraulic head (similar to a flow
potential), from which velocities are later computed. Con-
taminant migration is simulated using the computed ve-
locity field and an independent particle-in-cell code. Be-
cause contaminant concentrations are typically dilute, the
transport and flow calculations can be considered decou-
pled. The flow computation is done on a 256-node CRAY
T3D massively parallel computer using the simulation
code PARFLOW, and the transport is done on a CRAY C90
vector supercomputer using the particle-in-cell code
SLIM.

2 Simulation Methodology

In this section, we describe our simulation strategy. Spe-
cifically, we discuss problem definition, groundwater
flow modeling, and contaminant transport.

2.1 SUBSURFACE MODEL DEFINITION

The subsurface model is the key to problem specification.
Geologists and hydrologists use hard data (gathered from
monitoring wells and core samples) and soft data (via
indirect measurements and inferred knowledge about a
given site) to develop a conceptual model of the subsur-
face. This usually results in the identification of distinct
hydrostratigraphic units (geounits), each having a specific
distribution of soils and associated properties, such as
hydraulic conductivity. This process is often aided by the
use of a front-end graphical user interface (e.g., Ground-
water Modeling System) (U.S. Department of Defense,
1995), which allows the engineer or scientist to define and
adjust the modeled geounits interactively.

“We need the capability to repeatedly run
detailed simulations of large sites, and this
need drives our use of supercomputers.”
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Flow in subsurface media is usually slow enough to be
described by Darcy’s law (Bear, 1972),

εv – K ∇ h = 0, (1)

where v is the average groundwater velocity (L/T), ε is the
local medium porosity, h is the hydraulic head (L), and K
is the hydraulic conductivity of the medium (L/T).

In a homogenized model, an effective mean value for
the hydraulic conductivity and porosity is assigned to each
geounit (Gelhar, 1993), even though K may vary locally
by several orders of magnitude. In our detailed models,
stochastic simulation is used to reproduce variabilities
(i.e., heterogeneities) within the layers (see Figure 1).
Specifically, we use Tompson’s turning bands algorithm
(Tompson, Ababou, and Gelhar, 1989) to generate a spec-
tral random field for the log-hydraulic conductivity (ln K)
distribution. This distribution often is modeled by the
following (Gelhar, 1993; Tompson, 1993; Tompson,
Ababou, and Gelhar, 1989; Tompson, Vomvoris, and Gel-
har, 1988):

ln K(x) = F + f(x),

where F is a constant and f (x) is a realization of a
stationary, zero-mean, spatially correlated random field.
The correlation function of f is anisotropic and assumed
to be of the form

C(r )  = σ2 exp (–(rx /λx)
2 – (ry /λy)

2 – (rz /λz)
2)1/2,

where r  = (rx, ry, rz) is a spatial separation lag vector. Input
parameters to this model include the geometric mean KG

(L/T) for K (KG = exp (F)), the variance σ2 of f, and
correlation lengths (L) λx, λy, and λz. Each geounit may

have its own set of geostatistics; the turning bands algo-
rithm is run within each. In this way, we represent both
the gross geologic features and the fine-scale heterogenei-
ties. As we will see in the numerical simulations, these
heterogeneities strongly influence contaminant migration
(see Ashby et al., 1995, for a discussion of the parallel
implementation and performance of turning bands).

2.2 FLOW FIELD COMPUTATION

Our mathematical model of groundwater flow is derived
by substituting Darcy’s law (equation 1) into the conser-
vation of fluid mass in a nondeforming medium

∇ . (εv) – Q = 0

to obtain

– ∇. (K ∇ h) – Q = 0. (2)

Here, Q is a source term (T–1) used, for example, to
represent pumping wells. The hydraulic conductivity re-
alization is obtained from a turning bands algorithm (ap-
plied to each layer) as described above. At present, the
problem domain is assumed to be a parallelepiped; the
boundary conditions may be Dirichlet, Neumann, or
mixed.

We use a standard 7-point finite volume spatial dis-
cretization on a uniform mesh. After discretization, we
obtain a large system of linear equations, Ah = q. The
coefficient matrix A is symmetric positive definite and has
the usual seven-stripe pattern. The matrix has order
N = nx × ny × nz, where the ni are the number of grid points

in the x, y, and z directions, respectively. For problems of
interest, N is in the millions; the large number is dictated
by the size of the physical site and the need to resolve
heterogeneities adequately. Once the hydraulic head is
computed, the velocity field can be calculated easily using
a simple differencing scheme. This field is then passed to
a transport code to simulate contaminant migration (see
below).

The solution of the large linear system is computation-
ally intensive and must be done efficiently and accurately.
We are using a multigrid-preconditioned conjugate gradi-
ent (MGCG) solver. An attractive feature of good multi-
grid algorithms is that the rate of convergence is inde-
pendent of problem size, meaning that the number of
iterations remains fairly constant. Although one could use
multigrid as a stand-alone solver, we prefer to use it as a
preconditioner because it is easier to implement in this
fashion. The outer CG iteration provides robustness, es-
pecially when the underlying PDE has a nearly discon-
tinuous coefficient function, as in our case. In the current
implementation of MGCG, the preconditioning step con-
sists of a single standard V-cycle, with either damped
Jacobi or red/black Gauss-Seidel smoothing options (pre-
and post-smoothing is done). Since our problems tend to
be anisotropic (due to a skewed grid cell aspect ratio), we
employ a semicoarsening strategy in which the grid is
coarsened in one spatial direction at a time. Because of the
discontinuous nature of K, we use operator-induced pro-
longation and restriction, as well as an algebraic definition
of the coarse grid operators. See Ashby and Falgout
(1996) for a complete description of this algorithm and its
parallel performance for a variety of test problems.

To parallelize the MGCG algorithm, we distribute the
problem data across a logical 3-D process grid consisting
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of P = p × q × r processes. The data within a process are
viewed as a three-dimensional subgrid of grid points (as
defined by the discretization of equation (2)). For exam-
ple, vector element data and matrix row data (viewed as
stencils) are associated with grid points in the owning
process’s subgrid. Note that although we distribute the
problem data by decomposing the problem domain, we
are not doing domain decomposition in the algorithmic
sense. We are solving the full problem rather than inde-
pendent subproblems.

When possible, the communications and computations
in PARFLOW are scheduled so that they overlap, thereby
enhancing parallel efficiency on machines with the appro-
priate hardware support. All message-passing primitives
are localized within a machine-dependent library called
AMPS, which has been layered on top of several message-
passing systems, including the Reactive Kernel, PVM,
Chameleon, MPI, and CRAY SHMEM. The results in this
paper correspond to the SHMEM port.

2.3 CONTAMINANT TRANSPORT
SIMULATION

We now consider the transport of one or more reactive
chemical contaminants within a steady-state groundwater
flow field (as calculated by PARFLOW, for example). Spe-
cifically, we consider chemical constituents that exist (at
low concentration) within the flowing aqueous phase and
as sorbed phases on the solid matrix of the porous me-
dium. Mass transfer between the liquid and solid phases
is assumed to be governed by reversible, equilibrium,
sorption reactions (de Marsily, 1986). This means that the
chemical mass is partitioned between the liquid and solid
phases instantaneously, or at least much faster than the
time scale of advective flow (equilibration time is com-
monly on the order of a few minutes compared to a time
scale of days for our problem).

Because the flow and transport processes can be de-
coupled, we may use the computed steady-state velocity
field directly within the total mass balance for each con-
stituent i,

∂ρi

∂t
 + ∇ . 





vρi

R i




 − ∇ . 




εDi .∇ 





ρi

εR i








 = 

−ρi

εR i

 Q.
(3)

Here, ρi(x, t) is the total (aqueous plus solid) mass density
of constituent i at a point in the subsurface formation
(m/L3), v(x) is the fluid velocity computed by PARFLOW

(L/T), and Di(v) is a hydrodynamic dispersion tensor
(L2/T). This tensor is typically described by

“The solution of the large linear system is
computationally intensive and must be
done efficiently and accurately.”
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Di ≈ αT | v | I + (αL − αT) 
v ⊗ v
| v |

,

where αL and αT are the local longitudinal and transverse

dispersivities (L), respectively.
In equation (3), we have assumed that sorption onto the

solid phase occurs such that the aqueous concentration, ci

(m/L3), may be inverted from

ρi = εciR i. (4)

The dimensionless quantity Ri represents the local parti-
tioning or retardation capacity of the soil and may gener-
ally be concentration dependent. In the experiments be-
low, we consider a nonreactive tracer (i = 1) and a linearly
sorbing compound (i  = 2) such that �� 1 = 1 and �� 2 =
1 + εkd/ (1 – ε), where kd is a dimensionless sorption
coefficient.

In our simulations, the soil sorptivity will be specified
from a direct correlation with hydraulic conductivity
through ln εkd ≈ –0.86 – 0.32 ln K (Tompson, 1993). The
quantities ε, αL, and αT will be held constant and set to
representative local values of 0.3 ft, 1.0 ft, and 0.1 ft,
respectively.

The right-hand side in equation (3) accounts for a loss
of chemical mass from a pumping sink of strength Q.
Equations (3) and (4) are the fundamental transport equa-
tions we wish to solve (for ρi and ci).

We use an efficient particle-grid method (Tompson,
1993; Tompson and Dougherty, 1992; Tompson, Vom-
voris, and Gelhar, 1987; Uffink, 1983) to solve these
equations. The total concentration distribution for con-
stituent i, ρi, is represented by a collection of Ni particles

(each of mass m). The concentration at a given point in
the subsurface is determined from the mass density of
particles in a neighborhood about that point. The number
of particles per unit mass specifies the particle resolution.
The greater this resolution, the more accurate the simula-
tion and the greater the computational expense. A coupled
streamline advection and random walk procedure is used
to move and diffuse the particles through the subsurface.
Particles may be removed from the system as a result of
pumping within the domain or if they cross a domain
boundary (Tompson, 1993; Tompson et al., 1994).

In the SLIM computer code (Tompson, Vomvoris, and
Gelhar, 1987), the continuum variables are represented as
cell-centered quantities on the grid used in PARFLOW

(which computes the hydraulic head at nodes). During
particle displacement, these quantities are gathered to
particle positions using an interpolation formula

(Tompson and Dougherty, 1992). Following particle dis-
placement, the particle masses are scattered back to the
grid cells using another interpolation formula, leading to
a distribution of ρi(x, t) on the grid. Some particles may
be removed to account for boundary conditions and mass
sinks.

An initial point source is represented by assigning an
appropriate number of particles to the desired cells to
represent a specified amount of total (aqueous plus sor-
bed) mass. Boundary conditions at the edges of the grid
domain may allow for outflow, reflection (no flux), or
Dirichlet (constant concentration) conditions. Isolated
pumping wells located within single-grid cells remove
particles at random as a function of the time step and
pumping rate.

3 Simulation Results

In this section, we describe the results of two numerical
simulations, the purpose of which is to study the influence
of fine-scale heterogeneities on contaminant migration
(described above) through a multilayered subsurface. Our
test problem corresponds to a physical domain of size
12,700 × 12,700 × 630 ft3 with N = 257 × 257 × 129 grid
points (over 8 million spatial zones). This implies an
approximate grid spacing of ∆x = 49.6 ft, ∆y = 49.6 ft, and

∆z = 4.9 ft, yielding an approximate grid cell aspect ratio

of 10:10:1. The subsurface models are shown in Figure 1.
The geostatistical parameters used in each layer of the
heterogeneous model are given in Table 1. In the homo-
geneous model, the geometric means, KG, are used

throughout the layers (i.e., σ = 0). We impose no-flow
conditions on the top and bottom of the domain and
piecewise linear Dirichlet boundary conditions on the four
vertical sides (hydraulic head values ranged from 510 to
670 ft, depending on the side).

We study the impact of a single pumping well (located
in the center of the domain) on the migration of the two
chemical species of interest for each of the homogeneous
and heterogeneous models. The pumping action was
simulated by fixing the hydraulic head at the appropriate
grid cell to 530 ft. We simulate 411 years of chemical
transport, turning the well on at time t = 103 years. To do
this, we computed two flow fields: one without the well
and one with the well. (Because the fluid and soil matrices
are incompressible, there are no transient effects associ-
ated with starting the well.) These flow fields were passed
to SLIM, which made the switch at the prescribed time
step. We remark that this investigation is similar to the one
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described in Tompson et al. (1994), but there we modeled
only a 320-ft deep two-layer subsurface medium on a
coarser computational grid (∆x = ∆y = 100 ft).

3.1 FLOW VELOCITIES

The MGCG algorithm was halted once the C-norm of the
relative residual was less than 10–9 (where C denotes the
multigrid preconditioning operator). We used one step of
symmetric red/black Gauss-Seidel as the smoother (both
pre- and post-smoothing). The resulting hydraulic heads
were then used to compute the velocity components
needed to simulate contaminant migration with SLIM.
The hydraulic heads were computed on a 257 × 257 × 129
node-centered grid, and the velocity components were
computed on the corresponding 256 × 256 × 128 cell-cen-
tered grid.

The head contours for both the homogeneous and
heterogeneous subsurface models (with the pumping
well) are illustrated in Figure 2. The xy plots correspond
to slice-plane data taken midway in the z-direction. The
xz plots correspond to data taken one-fifth of the way in
the y-direction. From the figure, we see that the general
direction of flow is southeast to northwest in both subsur-
face models (flow runs perpendicular to the contour lines
from high head to low head). However, the wavy contours
in the heterogeneous model indicate that the direction of
flow varies considerably more than in the homogeneous
model. Furthermore, the conductivities in the heterogene-

Fig. 1 Subsurface model with homogeneous layers (left) and heterogeneous layers (right). The dark gray region represents a
clay layer

Table 1
Geostatistical Parameters Used in Each of the
Heterogeneous Layers Shown in Figure 1

Geounit     KG   σ   λx    λy    λz

Top layer 4.56 2.08 400.0 400.0 20.0
Second layer 5.92 1.55 400.0 400.0 20.0
Third layer 1.98 1.43 400.0 400.0 20.0
Fourth layer 2.55 1.45 400.0 400.0 20.0
Fifth layer 1.39 1.98 400.0 400.0 20.0
Clay layer 0.01 1.46 400.0 400.0 20.0
Fault zone 0.02 — —  —  — 

NOTE: KG units are ft/day, and λ units are ft.
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ous model result in greatly varying velocity magnitudes.
This variation of both flow direction and magnitude pro-
duces a large dispersive effect in chemical transport that
cannot be accurately modeled with homogeneous models.

Another point of interest is illustrated in the xz contour
plots of Figure 2. Many groundwater codes are only
two-dimensional simulators that assume flow in the ver-
tical is negligible. From the figure, we see that vertical
flow is significant in both of our subsurface models,
particularly near the interface of the fault and clay regions.
However, as mentioned above, the vertical flow is much
more varied in the heterogeneous model.

3.2 PARALLEL PERFORMANCE ON THE T3D

The hydraulic heads for both subsurface models were
computed on a 256-node CRAY T3D (each node consists
of a 150 MHz DEC Alpha processor and 64 MB of
memory). The MGCG iteration counts and timings (in
seconds) required for each of the head computations are
summarized in Table 2. We give the MGCG time for
solving the large linear system, as well as the total time
spent in the simulator. This latter time includes input/
output (I/O), which is expensive because of the shear size
of the output files (about 68 MB), and problem setup,
which is expensive in the case of the heterogeneous model
because each processor must call the turning bands algo-

Fig. 2 Head contours for a homogeneous model (left) and a heterogeneous model (right) for selected xy and xz slice planes

Table 2
MGCG Iterations and Wall-Clock Time (in sec-
onds) Required to Solve for the Hydraulic Head
on a 257 ´ 257 ´ 65 Grid (on P = 4 ´ 4 ´ 4
processors)

          Multigrid-Preconditioned 

Subsurface
       Conjugate Gradient

Model Well Iterations Time Total Time

Homogeneous No 14 54.5 232.1
Homogeneous Yes 14 54.5 231.4
Heterogeneous No 27 99.1 394.5
Heterogeneous Yes 27 99.1 400.7
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rithm for every layer that intersects its subgrid data. The
process grid topology was P = 4 × 4 × 4. Notice that the
heterogeneous problems take longer, which is due to
ill-conditioning induced by the variability in K. The well
has a negligible effect on the flow calculation but, of
course, affects the resulting head values.

In Figure 3, we report scaled speedup for the MGCG
on the T3D. Here, each processor is given a 64 × 64 × 32
subgrid, so that the total problem size on P = p × q × r
processors is NP = 64p × 64q × 32r. In other words, we
allow the total problem size to grow with P. Moreover,
the shape of the problem domain is determined by the
process grid topology p × q × r. The point of this study is
to see how well the routines make use of additional
processors. Our goal is to obtain nearly flat curves (good
scalability) that are near one (good scaled efficiency). For
a more complete discussion of the parallel performance
of MGCG, see Ashby and Falgout (1996). For informa-
tion on the parallel performance of other PARFLOW rou-
tines, see Ashby et al. (1995).

In the first graph, scaled speedup is defined to be MP /
(P M1), where MP is the MFLOPs (million floating-point
operations per second) achieved on P processors. Here,
we measure the scalability of our implementation of
MGCG. As we see, the graph is fairly flat, indicating good
scalability. In the second graph, we define scaled speedup
to be T1/TP, where TP is the time required to execute the
MGCG algorithm (to convergence) on P processors.
Since the number of iterations required for convergence
fluctuates with P, this graph measures the combined
scalability of the algorithm itself and our implementation

Fig. 3 Scaled speedup on the CRAY T3D
NOTE: MGCG = multigrid-preconditioned conjugate gradient. MFLOPs = million floating-point operations per second.

“This variation of both flow direction and
magnitude produces a large dispersive
effect in chemical transport that cannot be
accurately modeled with homogeneous
models.”
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of it. We also plot the MGCG iteration count, which varies
between 20 and 26 iterations (using the C norm stopping
criterion). Notice the inverted relationship between scaled
speedup and iteration count (as one would expect). These
two graphs demonstrate that both the MGCG algorithm
and its implementation are scalable.

3.3 CHEMICAL TRANSPORT

After computing the flow fields, they were passed to
SLIM for the contaminant migration study. Recall that in
each simulation (homogeneous layers vs. heterogeneous
layers), we used two flow fields: one without the well and
one with the well. The fields were switched at a specified
time to simulate the effect of an undetected contaminant
plume spreading for a period of time before activating
pump-and-treat remediation. The initial constant concen-
tration was established by assigning particles to 128 con-
tiguous grid cells. We used approximately 781 particles
per cell with a total of 105 particles per contaminant
species in the system.

We simulated 411 years of chemical transport of the
sorbing and nonsorbing chemical species. For the homo-
geneous model, ∆t = 25 days. In the heterogeneous model,
the presence of preferential flow channels dictated a
smaller time step of ∆t = 5 days. In each case, the ambient
(no-well) PARFLOW velocity field was used to drive the
contaminant transport for 103 simulated years. At this
point, the pumped (with the well) PARFLOW velocity field
was substituted and used to drive the transport for another
308 simulated years. In each time step, a probabilistic
model was used to remove contaminant particles from a
hydraulic capture zone surrounding the well.

Figures 4 and 5 show the nonsorbing contaminant
plume at four different times in the simulations, in the
homogeneous and heterogeneous flow fields, respec-
tively. The times chosen are not all the same for the
homogeneous and heterogeneous cases because the plume
moves much faster in the heterogeneous flow field, due to
the effect of preferential flow channels. The first frame in
each figure is t = 21 years, before the plume has advanced
far from its initial loading in a localized region of space.
The second frame in each figure is t = 103 years, at the
last time step before the well flow field and contaminant
sink model were turned on. The third frame for the het-
erogeneous case shows absorption of the plume both
upstream and downstream of the well. The fourth frames
for both cases show that nearly all of the contaminant mass
upstream of the well has been cleaned up.

Figures 6 and 7 show the chemically sorbing contami-
nant plume. The sorbing contaminant migrates noticeably
slower than the nonsorbing contaminant because of the
retarding effect of the chemical reaction. This is clearly
seen in the last frame of the uniform conductivity case, in
which the nonsorbing contaminant (see Figure 4) has
already been completely cleaned up by the well, while the
sorbing plume (see Figure 6) has not yet reached the well’s
capture zone. The impact of chemical reaction is also clear
in the second frame of the heterogeneous conductivity
case, in which the sorbing contaminant plume still has
much more mass upstream of the well at the initiation of
pumping.

3.4 PERFORMANCE ON THE C90

We ran the SLIM simulations on a single processor of a
CRAY C90. The uniform conductivity simulation took
about 1 hour of CPU time, ran at an average of 136
MFLOPs, and showed an average vector length of 88 (the
ideal length is the length of the vector unit, 128). The
heterogeneous simulation took about 3.3 hours of CPU
time, ran at an average of 146 MFLOPs, and showed an
average vector length of 80. Particle-grid simulations are
not generally known to achieve high MFLOP rates; they
are bound by memory-access speed. These SLIM runs, for
example, executed about 132 and 148 million vector
memory references per second for the uniform and het-
erogeneous cases, respectively. Note that the heterogene-
ous simulation ran at a higher MFLOP rate than the
homogeneous simulation but showed a smaller average
vector length. The reasons for this are too complex to
examine in detail here, but the different profiling meas-
urements given below are a contributing factor.

Profiling measurements on the SLIM for the uniform
case reveal that about 34% of the time went toward
computing the total mass density values, which includes
the accumulation (scatter-add) from the particles. This
time can be strongly dependent on the method of density
calculation (Hockney and Eastwood, 1981). Moving the
particles, including computation of the displacement val-
ues, took 25% of the time. Modeling the pumping well, a
sort of specialized boundary condition, took 22% of the
time. Particle boundary condition enforcement and diag-
nostic breakthrough counting (not discussed here) took
another 18%; the remaining time was spent in miscella-
neous routines.

Profiling measurements for the heterogeneous case
show that about 35% of the time went toward computing
the total mass density values, which includes the accumu-
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Fig. 4 Snapshots in time: Dispersion of nonsorbing contami-
nant assuming homogeneous layers

Fig. 5 Snapshots in time: Dispersion of nonsorbing contami-
nant assuming heterogeneous layers
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Fig. 6 Snapshots in time: Dispersion of sorbing contami-
nant assuming homogeneous layers

Fig. 7 Snapshots in time: Dispersion of sorbing contami-
nant assuming heterogeneous layers
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lation (scatter-add) from the particles. Moving the parti-
cles took 21% of the time. Modeling the pumping well
took 16% of the time. Determining the liquid mass densi-
ties from the total mass densities took 7.3% of the time.
Particle boundary condition enforcement and diagnostic
breakthrough counting took another 18%; the remaining
time was spent in miscellaneous routines.

The reason that the heterogeneous simulation used 5
times as many time steps as the homogeneous simulation,
yet took only 3.3 times as much total CPU time, is not
easily explained. Early tests led us to speculate that this
was partly accounted for by the greater dispersion in the
heterogeneous case—the plume extends to many more
grid cells than in the homogeneous case, which leads, in
principle, to greater vector length in operations over all
grid cells containing any contaminants. A closer look
revealed that in the parts of the code operating on only
grid cell data, the average vector length measured was
actually shorter in the heterogeneous case. Aside from this
curious behavior, more careful measurements also
showed that the floating-point operation rates in all parts
of the code are the same or higher in the heterogeneous
case than the uniform case; this at least accounts empiri-
cally for the greater execution efficiency of the random
case.

4 Conclusions

Our results indicate that PARFLOW can readily handle very
large and highly resolved steady flow problems in realis-
tic, nonuniform porous media. Our particular application
has illustrated the importance and impact of nonunifor-
mity in soil properties on solute migration and spreading
phenomena. Performance statistics of PARFLOW’s MGCG
scheme on the T3D have shown excellent scalability
properties. The companion particle-in-cell code, SLIM,
works very well on the C90 for simulating the migration
and spreading of small, well-contained solute pulses but
suffers when the mass distribution is widespread and
concentrations are large.

Future communications will report on improvements
to PARFLOW that include the addition of a more general
transient flow formulation, allowing for multiple-phase
flow problems to be treated, an internal (grid-based) trans-
port scheme, and an adaptive grid capability for modify-
ing the spatial grid resolution in arbitrary portions of the
simulation domain. We will also report on the specific
application of PARFLOW to problems at several actual field
locations.
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